1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
| class GraphConvolution(nn.Module):
def __init__(self, in_features, out_features, bias=True): super(GraphConvolution, self).__init__() self.in_features = in_features self.out_features = out_features self.weight = Parameter(torch.FloatTensor(in_features, out_features)) if bias: self.bias = Parameter(torch.FloatTensor(out_features)) else: self.register_parameter('bias', None) self.reset_parameters()
def reset_parameters(self): stdv = 1. / math.sqrt(self.weight.size(1)) self.weight.data.uniform_(-stdv, stdv) if self.bias is not None: self.bias.data.uniform_(-stdv, stdv)
def forward(self, input, adj): support = input @ self.weight output = adj @ support if self.bias is not None: return output + self.bias else: return output
def __repr__(self): return self.__class__.__name__ + ' (' + str(self.in_features) + ' -> ' + str(self.out_features) + ')' class GCN(nn.Module): def __init__(self): super(GCN, self).__init__() self.gc1 = GraphConvolution(GCN_FEATURE_DIM, GCN_HIDDEN_DIM) self.ln1 = nn.LayerNorm(GCN_HIDDEN_DIM) self.gc2 = GraphConvolution(GCN_HIDDEN_DIM, GCN_OUTPUT_DIM) self.ln2 = nn.LayerNorm(GCN_OUTPUT_DIM) self.relu1 = nn.LeakyReLU(0.2,inplace=True) self.relu2 = nn.LeakyReLU(0.2,inplace=True)
def forward(self, x, adj): x = self.gc1(x, adj) x = self.relu1(self.ln1(x)) x = self.gc2(x, adj) output = self.relu2(self.ln2(x)) return output
|