GCN

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
class GraphConvolution(nn.Module):

def __init__(self, in_features, out_features, bias=True):
super(GraphConvolution, self).__init__()
self.in_features = in_features
self.out_features = out_features
self.weight = Parameter(torch.FloatTensor(in_features, out_features))
if bias:
self.bias = Parameter(torch.FloatTensor(out_features))
else:
self.register_parameter('bias', None)
self.reset_parameters()

def reset_parameters(self):
stdv = 1. / math.sqrt(self.weight.size(1))
self.weight.data.uniform_(-stdv, stdv)
if self.bias is not None:
self.bias.data.uniform_(-stdv, stdv)

def forward(self, input, adj):
support = input @ self.weight # X * W (N,in_fea) * (in_fea,out_fea)
output = adj @ support # A * X * W (N * N) * (N out_fea)
if self.bias is not None: # A * X * W + b
return output + self.bias
else:
return output

def __repr__(self):
return self.__class__.__name__ + ' (' + str(self.in_features) + ' -> ' + str(self.out_features) + ')'

class GCN(nn.Module):
def __init__(self):
super(GCN, self).__init__()
self.gc1 = GraphConvolution(GCN_FEATURE_DIM, GCN_HIDDEN_DIM)
self.ln1 = nn.LayerNorm(GCN_HIDDEN_DIM)
self.gc2 = GraphConvolution(GCN_HIDDEN_DIM, GCN_OUTPUT_DIM)
self.ln2 = nn.LayerNorm(GCN_OUTPUT_DIM)
self.relu1 = nn.LeakyReLU(0.2,inplace=True)
self.relu2 = nn.LeakyReLU(0.2,inplace=True)

def forward(self, x, adj): # x.shape = (seq_len, GCN_FEATURE_DIM); adj.shape = (seq_len, seq_len)
x = self.gc1(x, adj) # x.shape = (seq_len, GCN_HIDDEN_DIM)
x = self.relu1(self.ln1(x))
x = self.gc2(x, adj)
output = self.relu2(self.ln2(x)) # output.shape = (seq_len, GCN_OUTPUT_DIM)
return output

GAT